Sains Malaysiana 54(2)(2025): 483-492
http://doi.org/10.17576/jsm-2025-5402-14
Production and Acceptance of Gamma-Aminobutyric Acid
(GABA)-Kimchi using Tetragenococcus halophilus and Monosodium Glutamate
(Penghasilan dan Penerimaan Kimchi yang Mengandungi Asid Gamma-Aminobutirik (GABA) menggunakan Tetragenococcus halophilus dan Monosodium Glutamat)
FATEEN AQLIMA HANIEM AB JABAR1, CHONG SHIN
YEE1, ZUL ILHAM2, NURUL AQILAH MOHD ZAINI3,
MUHAMAD HAFIZ ABD RAHIM4, NUR ASYIQIN ZAHIA-AZIZAN1 &
WAN ABD AL QADR IMAD WAN-MOHTAR1,*
1Functional Omics and
Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of
Science, Universiti Malaya, 50603 Kuala Lumpur,
Malaysia
2Environmental Science
and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Food
Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
4Faculty of Food and
Science and Technology, Universiti Putra Malaysia,
43400 Serdang, Selangor, Malaysia
Diserahkan: 23 Ogos 2024/Diterima: 12 November
2024
Abstract
The addition of gamma-aminobutyric acid (GABA) to
fermented foods has been progressively expanded to produce ‘Superfood’. In this
study, Tetragenococcus halophilus was extracted from soy sauce moromi from
local factory and evaluated for its potential of Gamma-Aminobutyric Acid (GABA)
production in kimchi fermentation. There were four different formulations that
were fermented for 20 days. Kimchi fermentation was performed on kimchi added
with Monosodium Glutamate (MSG) (T1), kimchi inoculated with T. halophilus (T2), kimchi with combined MSG and T. halophilus (T3), and plain kimchi with no
additional starter as a control (C), respectively. A spectral HPLC analysis
confirmed that the control sample (C) obtained the highest GABA with 10.90 mg/L
followed by T2 with 6.02 mg/L, T1 with 5.72 mg/L, and the lowest content of
GABA is produced by T3 with 3.74 mg/L. Sensory analysis was performed by a
total of 50 panellists examined the colour, flavour, texture, taste, and
overall acceptance of kimchi samples. Kimchi with MSG (T1) received the highest
scores for overall acceptance including flavour and taste. This study
demonstrated the development of GABA-kimchi using T. halophilus and MSG as future food comprising substantial nutritional profile and improved
sensory characteristics.
Keywords: Fermentation; GABA; kimchi; MSG; superfood; Tetragenococcus halophilus
Abstrak
Penambahan asid gamma-aminobutirik (GABA) kepada makanan yang ditapai telah diperluaskan secara berperingkat untuk menghasilkan makanan super. Dalam kajian ini, Tetragenococcus halophilustelah diekstrak daripada moromi kicap daripada kilang tempatan dan dinilai untuk potensi penghasilan asid gamma-aminobutirik (GABA) dalam penapaian kimchi. Terdapat empat formulasi berbeza yang ditapai selama 20 hari. Penapaian kimchi dilakukan pada
kimchi yang ditambah dengan Monosodium Glutamat (MSG) (T1), kimchi yang digabungkan dengan T. halophilus (T2), kimchi dengan gabungan MSG dan T. halophilus (T3) dan kimchi biasa tanpa pemula tambahan sebagai kawalan (C), secara berturutan. Analisis HPLC spektrum mengesahkan bahawa sampel kawalan (C) memperoleh GABA tertinggi dengan 10.90 mg/L diikuti oleh T2 dengan 6.02 mg/L, T1 dengan 5.72 mg/L dan kandungan terendah GABA dihasilkan oleh T3 dengan 3.74 mg/L. Analisis deria telah dilakukan terhadap sejumlah 50 ahli panel yang meneliti warna, rasa, tekstur, rasa dan penerimaan keseluruhan sampel kimchi. Kimchi dengan MSG
(T1) menerima markah tertinggi untuk penerimaan keseluruhan termasuk perasa dan rasa. Kajian ini menunjukkan bahawa pengeluaran GABA-kimchi menggunakan T. halophilus dan MSG sebagai makanan masa depan dengan profil nutrisi pemakanan yang tinggi dan ciri deria yang lebih baik.
Kata kunci: Fermentasi; GABA; kimchi; makanan super; MSG; Tetragenococcus halophilus
RUJUKAN
Azizan, N., Lim, T., Raseetha,
S. & Wan Mohtar, W.A.A.-Q.I. 2022. Development of
γ-aminobutyric acid (GABA)-rich yoghurt using Tetragenococcus halophilus strain KBC isolated from a commercial
soy sauce moromi. Food Research 6(6): 39-47.
Chung, H-K., Yang, H.J., Shin, D. &
Chung, K.R. 2016. Aesthetics of Korean foods: The symbol of Korean culture. Journal
of Ethnic Foods 3(3): 178-188.
Cui, Y., Miao, K., Niyaphorn,
S. & Qu, X. 2020. Production of gamma-aminobutyric acid from lactic acid
bacteria: A systematic review. International Journal of Molecular Sciences 21(3):
995.
Devanthi, P.V.P., Linforth,
R., Onyeaka, H. & Gkatzionis,
K. 2018. Effects of co-inoculation and sequential inoculation of Tetragenococcus halophilus and Zygosaccharomyces rouxii on soy sauce
fermentation. Food Chemistry 240: 1-8.
Di Cagno, R., Mazzacane, F., Rizzello, C.G., De
Angelis, M., Giuliani, G., Meloni, M., De Servi, B. & Gobbetti, M.
2010. Synthesis of γ-aminobutyric acid (GABA) by Lactobacillus
plantarum DSM19463: Functional grape must beverage and dermatological
applications. Applied Microbiology and Biotechnology 86: 731-741.
Faizal, F., Ahmad, N., Yaacob,
J., Halim-Lim, S.A. & Rahim, M.A. 2023. Food processing to reduce
antinutrients in plant-based foods. International Food Research Journal 30(1):
25-45.
Hajar-Azhari, S.,
Ab Jabar, F.A.H., Ilham, Z., Abd Rahim, M.H., Zaini, N.A.M. & Wan, W.A.A.Q.I. 2024. Flavor compound profiles and enhancement strategies in the
kimchi-making process. Food Bioscience 2024: 105385.
Hepsomali, P., Groeger,
J.A., Nishihira, J. & Scholey,
A. 2020. Effects of oral gamma-aminobutyric acid (GABA) administration on
stress and sleep in humans: A systematic review. Frontiers in Neuroscience 14:
559962.
Hussin, F.S., Chay,
S.Y., Hussin, A.S.M., Wan Ibadullah,
W.Z., Muhialdin, B.J., Abd Ghani, M.S. & Saari, N. 2021. GABA enhancement by simple carbohydrates in
yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling. Scientific Reports 11(1): 9417.
https://pmc.ncbi.nlm.nih.gov/articles/PMC8093275/pdf/41598_2021_Article_88436.pdf
Jang, D-J., Chung, K.R., Yang, H.J., Kim,
K-S. & Kwon, D.Y. 2015. Discussion on the origin of kimchi, representative
of Korean unique fermented vegetables. Journal of Ethnic Foods 2(3):
126-136.
Jung, J.Y., Lee, S.H. & Jeon, C.O.
2014. Kimchi microflora: History, current status, and perspectives for
industrial kimchi production. Applied Microbiology and Biotechnology 98:
2385-2393.
Kazmi, Z., Fatima, I., Perveen,
S. & Malik, S.S. 2017. Monosodium glutamate: Review on clinical reports. International
Journal of Food Properties 20(Sup2): 1807-1815.
Kwon, S-Y., Garcia, C.V., Song, Y-C. &
Lee, S-P. 2016. GABA-enriched water dropwort produced by co-fermentation with Leuconostoc mesenteroides SM and Lactobacillus plantarum K154. Lwt 73: 233-238.
Lee, K.W., Shim, J.M., Yao, Z., Kim, J.A.
& Kim, J.H. 2018. Properties of kimchi fermented with GABA-producing lactic
acid bacteria as a starter. Journal of Microbiology and Biotechnology 28(4):
534-541.
Lee, M-E., Jang, J-Y., Lee, J-H., Park,
H-W., Choi, H-J. & Kim, T-W. 2015. Starter cultures for kimchi
fermentation. Journal of Microbiology and Biotechnology 25(5): 559-568.
Lim, K., & Koh, J. 2021. Fermented
foods and probiotic beverages in Korea. In Probiotic Beverages pp. 61-80.
Academic Press.
Löliger, J. 2000. Function and importance of
glutamate for savory food. The Journal of
Nutrition 130(4): 915S-920S.
Lyu, C., Zhao, W., Peng, C., Hu, S., Fang, H.,
Hua, Y., Yao, S., Huang, J. & Mei, L. 2018. Exploring the contributions of
two glutamate decarboxylase isozymes in Lactobacillus brevis to acid
resistance and γ-aminobutyric acid production. Microbial Cell Factories 17: 180.
Phuengjayaem, S., Kuncharoen,
N., Booncharoen, A., Ongpipattanakul,
B. & Tanasupawat, S. 2021. Genome analysis and
optimization of γ-aminobutyric acid (GABA) production by lactic acid
bacteria from plant materials. The Journal of General and Applied
Microbiology 67(4): 150-161.
Rakotosamimanana, V.R. & De Kock, H.L. 2020. Sensory
studies with low-income, food-insecure consumers. Current Opinion in Food
Science 33: 108-114.
Rayavarapu, B., Tallapragada,
P. & Usha, M. 2019. Statistical optimization of γ-aminobutyric acid
production by response surface methodology and artificial neural network models
using Lactobacillus fermentum isolated from palm wine. Biocatalysis and Agricultural Biotechnology 22:
101362.
Sassi, S., Ilham, Z., Jamaludin,
N.S., Halim-Lim, S.A., Shin Yee, C., Weng Loen, A.W., Poh Suan, O., Ibrahim, M.F.
& Wan-Mohtar, W.A.A.Q.I. 2022. Critical optimized
conditions for gamma-aminobutyric acid (GABA)-producing Tetragenococcus halophilus strain KBC from a commercial soy sauce Moromi in batch fermentation. Fermentation 8(8):
409.
Seok, J-H., Park, K-B., Kim, Y-H., Bae,
M-O., Lee, M-K. & Oh, S-H. 2008. Production and characterization of kimchi
with enhanced levels of γ-aminobutyric acid. Food Science and
Biotechnology 17(5): 940-946.
Surya, R. & Lee, A.G.Y. 2022. Exploring
the philosophical values of kimchi and kimjang culture. Journal of Ethnic Foods 9(1): 20.
Susilowati, S., Laia, S.
& Purnomo, H. 2018. The effect of salt concentration and fermentation time
on pH value, total acidity and microbial characteristic of pickled ginger (Zingiber officinale Rosc.). International Food Research Journal 25(6): 2301-2306.
Ting Wong, C.G., Bottiglieri,
T. & Carter Snead III, O. 2003. GABA, γ‐hydroxybutyric acid, and
neurological disease. Annals of Neurology: Official Journal of the American
Neurological Association and the Child Neurology Society 54(S6): S3-S12.
Udomsil, N., Rodtong,
S., Choi, Y.J., Hua, Y. & Yongsawatdigul, J.
2011. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. Journal of Agricultural and Food
Chemistry 59(15): 8401-8408.
Wan-Mohtar,
W.A.A.Q.I., Ilham, Z., Jamaludin, A.A., David, W.
& Mohd Zaini, N.A.
2022. Fermented foods as alternative functional foods during post-pandemic in
Asia. Frontiers in Food Science and Technology 2: 1047970.
Wan-Mohtar,
W.A.A.Q.I., Sohedein, M.N.A., Ibrahim, M.F., Ab
Kadir, S., Suan, O.P., Weng Loen,
A.W., Sassi, S. & Ilham, Z. 2020. Isolation, identification, and
optimization of γ-aminobutyric acid (GABA)-producing Bacillus cereus strain KBC from a commercial soy sauce moromi in
submerged-liquid fermentation. Processes 8(6): 652.
Yang, S.Y., Lu, Z.X., Lu, F.X., Bie, X.M., Sun, L.J. & Zeng, X.X. 2006. A simple method
for rapid screening of bacteria with glutamate decarboxylase activities. Journal
of Rapid Methods & Automation in Microbiology 14(3): 291-298.
Yee, C.S., Sohedein,
M.N.A., Suan, O.P., Loen,
A.W.W., Abd Rahim, M.H., Soumaya, S., Ilham, Z. &
Wan, W.A.A.Q.I. 2021. The production of functional γ-aminobutyric acid
Malaysian soy sauce koji and moromi using the trio of Aspergillus oryzae NSK, Bacillus
cereus KBC, and the newly identified Tetragenococcus halophilus KBC in liquid-state fermentation. Future
Foods 4: 100055.
Yilmaz-Ersan, L.
& Kurdal, E. 2014. The production of
set-type-bio-yoghurt with commercial probiotic culture. International
Journal of Chemical Engineering and Applications 5(5): 402.
*Pengarang untuk surat-menyurat;
email: qadyr@um.edu.my
|